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Abstract. We consider the problem of minimizing the sum of a convex function and ofp > 1
fractions subject to convex constraints. The numerators of the fractions are positive convex functions,
and the denominators are positive concave functions. Thus, each fraction is quasi-convex. We give a
brief discussion of the problem and prove that in spite of its special structure, the problem isNP-
complete even when onlyp = 1 fraction is involved. We then show how the problem can be reduced
to the minimization of a function ofp variables where the function values are given by the solution
of certain convex subproblems. Based on this reduction, we propose an algorithm for computing the
global minimum of the problem by means of an interior-point method for convex programs.
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1. Introduction

Nonlinear programming problems often involve objective functions that can be
expressed in terms of one or several ratios. Exploiting the special structure of such
fractional programshas been the subject of extensive studies in the last few dec-
ades. For an overview of fractional programming, we refer the reader to Schaible
(1995) and the references given therein.

Fractional programs with only a single ratio or a maximum of finitely many
ratios are fairly well understood. Under suitable conditions, these problems still
satisfy some form of generalized convexity, which can be exploited in algorithms
for the numerical solution of such problems. For example, there are polynomial-
time interior-point methods for classes of such problems (see Freund and Jarre,
1994, 1995; Nemirovskii, 1996).

On the other hand, fractional programs with sums of ratios are much more
difficult and not as well understood (see Schaible, 1995, 1996). Such problems
possess some form of generalized convexity only in special cases, such as the
ones discussed in Schaible (1984) and Hirche (1985), and in general, they have
multiple maxima and minima. Algorithms for classes of sum-of-ratios problems
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are described in Cambini et al. (1989), Chen et al. (1998), Falk and Palocsay
(1992), Konno and Kuno (1990), Konno and Yamashita (1998), Ritter (1967), and
in the review article (Schaible, 1996). However, most of these algorithms are for
the optimization of linear ratios subject to linear constraints. The purpose of this
paper is to present a suitable interior-point approach for the solution of much more
general problems with convex-concave ratios and convex constraints. Our approach
is based on approximating the sum-of-ratios problem by a sequence of convex
minimization problems. For such convex problems, interior-point methods have
become the methods of choice, both from the point of view of theoretical complex-
ity and of practical efficiency. By using a simple warm-start strategy, the cost for
solving the individual convex subproblems can be reduced to very few iterations.
Finally, the interior-point method provides certain dual information needed for the
overall approach.

More precisely, we consider the problem of minimizing or maximizing the sum
of a single function and ofp > 1 ratios subject to convex constraints, and we
explore the use of interior-point methods for the solution of such problems. More
precisely, we study problems of the form

minimize h(x)+
p∑
j=1

fj (x)

gj (x)
subject to x ∈ S, (1)

and

maximize h(x)+
p∑
j=1

fj (x)

gj (x)
subject to x ∈ S. (2)

Here and in the sequel, we make the following assumptions.

ASSUMPTION 1. S ⊂ Rn is a compact convex set such thatfj(x) > 0 and
gj (x) > 0 for all j = 1,2, . . . , p and allx ∈ S. For the minimization problem(1),
the functionsh andf1, f2, . . . , fp are convex and the functionsg1, g2, . . . , gp are
concave. For the maximization problem(2), the functionsh andf1, f2, . . . , fp are
concave and the functionsg1, g2, . . . , gp are convex.

For simplicity, from now on we restrict ourselves to minimization problems
(1). The results and algorithms for(1) in this paper can easily be converted to
maximization problems(2) by simply exchanging ‘min’ and ‘max’, ‘convex’ and
‘concave’, and ‘6’ and ‘>’.

In Section 2, we first discuss the simplest case, namely the sum of a convex
function and onlyp = 1 ratio. We show that this problem isNP-complete and
propose a method for finding the global minimizer. In Section 3, the method is gen-
eralized to the casep > 2. In Section 4, we report results of numerical experiments.
In Section 5, we make some concluding remarks.
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2. Sum of one fraction and a convex function

Throughout this section, we assume thatp = 1. In this case, problem(1) reduces
to the form

minimize h(x)+ f (x)
g(x)

subject to x ∈ S. (3)

Here,f, g, h : S 7→ R are functions that satisfy the conditions specified in As-
sumption 1, i.e.,f andh are convex,g is concave, andf (x) > 0 and g(x) >0 for
x ∈ S. For any fixedr > 0, let

x(r) := arg min

{
h(x)+ f (x)

r

∣∣∣∣ g(x) > r andx ∈ S
}

(4)

and

q(r) := h(x(r)) + f (x(r))
r

. (5)

Forr > max{ g(x) | x ∈ S }, the feasible set in(4) is empty, and in this case, we set
q(r) := ∞. Note thatx(r) is not necessarily unique, but, of course,q(r) is. From
the definition ofq, it is obvious thatx(r∗) solves(3) if, and only if, r∗ minimizes
q. Thus, problem(3) is reduced to the one-dimensional problem of minimizing the
functionq.

Determiningx(r) for a given valuer > 0 is a convex optimization problem,
which can be solved by several methods.

If a separation oracle forS (⊂ Rn) is given, the evaluation ofq for a given
value ofr can be done (up to a given precision) by the ellipsoid method. Here, by
‘separation oracle’, we mean a subprogram that accepts as input any vectorx ∈ Rn
and produces as output either the information ‘x ∈ S ’, or a vectorh ∈ Rn, h 6= 0,
with hT y 6 hT x for all y ∈ S. In the second case, the vectorh defines a hyperplane
that ‘separates’x from S.

If self-concordant barrier functions for the sets{
x ∈ S

∣∣∣∣ h(x)+ f (x)r 6 λ andg(x) > r
}

for real numbersλ are known, thenq(r) can also be evaluated by an interior-point
method. Here, a barrier function for a convex setC is a function that is convex and
finite in the interior ofC, and goes to infinity asx approaches the boundary ofC.
The notion of self-concordance was first introduced in Nesterov and Nemirovskii
(1994). Roughly speaking, self-concordance is defined as a local Lipschitz condi-
tion of the Hessian of the barrier function. As shown in Nesterov and Nemirovskii
(1994), many convex sets possess easily computable self-concordant barrier func-
tions, and the concept of interior-point methods based on self-concordance is a very
general approach.
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We remark that for the special case of a constant functionh andp = 2 ratios,
problem(1) can be reduced to a problem of the form(3), i.e., with only one ratio,
by means of the Charnes–Cooper transformation (Charnes and Cooper, 1962); (see,
e.g., Cambini et al., 1989). A self-concordant barrier function for the conic hull
introduced by this transformation is discussed in Freund et al. (1996). In general,
whenp > 1 andh is constant, the Charnes–Cooper transformation can be used to
reduce problem(1) to a sum-of-ratios problem withp−1 ratios. This simple reduc-
tion may be crucial for algorithms whose computational costs grow rapidly with
the number of ratios. For example, given a sum-of-ratios problem withp = 2 and
h = 0, it will be more efficient to first employ the Charnes–Cooper transformation
and then apply the algorithm of the present paper to the reformulation withp = 1,
rather than using the same algorithm for the solution of the original problem with
p = 2.

2.1. PROPERTIES OF THE FUNCTIONq

Next, we recall some well-known properties of the functionq given by(4) and(5).
Let 0< r < s < t be given. Set

σ := s − r
t − r ∈ (0,1) and x := (1− σ )x(r)+ σx(t).

Then,s = (1− σ )r + σ t , and by the convexity off , we have

f (x)

s
6 (1− σ )f (x(r))+ σf (x(t))

(1− σ )r + σ t 6 max

{
f (x(r))

r
,
f (x(t))

t

}
. (6)

Similarly, the convexity ofh implies that

h(x) 6 (1− σ )h(x(r))+ σh(x(t)) 6 max{ h(x(r)), h(x(t)) } . (7)

By the concavity ofg, it also follows thatg(x) > s. Hence,x is feasible for(4),
and

q(s) 6 h(x)+ f (x)
s
. (8)

In spite of(6), (7), and(8), the functionq is not quasi-convex, i.e., in general it
may happen that

q(s) 66 max{ q(r), q(t) }.
Note that ifq were quasi-convex, problem(3) could be solved in polynomial time
by using a golden-mean search forq.

In view of the above derivation, we may still ask ourselves whether the function
q may ‘smooth out’ some of the local minimizers of(3), and whether minimizing
q might be easier than solving problem(3) directly (assuming that we can evaluate
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q and its derivatives). The observation that the functionq is not necessarily simpler
than(3) is illustrated in Figure 1 below, which depicts the functionq for a special
case whereS is just a real interval. This plot shows thatq may exhibit a very
‘irregular’ behavior.

2.2. NP-COMPLETENESS

Next, we prove that problem(3) is ‘essentially’NP-complete. To this end, we
show that a well-knownNP-complete problem, namely the following knapsack
problem, can be recast as a special instance of problem(3).

Knapsack problem:
Let an integerd > 1, weightsw1, w2, . . . , wd > 0, a weight limitw > 0, and
costsc1, c2, . . . , cd > 0 be given. SetI := { 1,2, . . . , d }. The problem is to
find a subsetI ′ ⊂ I such that

∑
i∈I ′ ci is maximized subject to the constraint∑

i∈I ′ wi 6 w.

For a discussion of the knapsack problem and a proof of itsNP-completeness,
we refer the reader to Garey and Johnson (1979).

Our result on theNP-completeness of problem(3) can now be stated as fol-
lows.

THEOREM 2. Problem(3) isNP-complete in the following sense. Let the data
of a knapsack problem withd ∈ N weights be given. There exists a convex, piece-
wise linear functionf , a linear functiong, and a linear functionh defined on
the intervalS = [1,2d ] such thatf , g, h, and their respective derivatives can
be evaluated in polynomial time,f , g, andh take values of polynomial size, and
solving problem(3) is equivalent to solving the given knapsack problem.

REMARK 3. The right endpoint 2d of the intervalS in Theorem 2 is not poly-
nomial. At first sight, this might lead to the impression that the reduction of a
knapsack problem to problem(3) is exponential. This, of course, is not the case. In-
deed, just as in the case of linear programs, which may also involve non-polynomial
upper or lower bounds, one only needs polynomiality in the coding length of the
problem. The coding length of problem(3) is at leastd, and hence the coding
length of the endpoint 2d is in fact polynomial in the coding length of the problem.
Finally, note that if the functionf/g were convex, then anε-approximation to
problem (3) could be computed in polynomial time. TheNP-completeness in
Theorem 2 does not result from the size of the endpoint 2d of S, but from the
lack of convexity.

Proof of Theorem2. Let d ∈ N, weightsw1, w2, . . . , wd , a weight limitw > 0,
and costsc1, c2, . . . , cd > 0 be the given data of a knapsack problem. From this
data, we now construct a special problem of the form(3) that is ‘equivalent’ to the
knapsack problem.
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To this end, we first enumerate the 2d subsets ofI = { 1,2, . . . , d }, by simply
counting from 1 to 2d in the binary system. Then, for each subsetI ′ of I , there
exists an index 16 k 6 2d such thatI ′ = Ik is thek-th subset of the enumeration.
We can determineIk just by knowing its indexk, and without looking at any
other subset. We can also determine the weight

∑
i∈Ik wi of the k-th subset just

by knowing the indexk. For 16 k 6 2d , we set

ηk :=


1 if

∑
i∈Ik

wi > w,

1−
∑
i∈Ik

ci/c otherwise,
and εk := kηk

2d
,

wherec :=∑d
i=1 ci . Solving the knapsack problem is then equivalent to finding

min
16k62d

ηk. (9)

For later use, we note that

06 εk 6 1 for all 16 k 6 2d . (10)

Next, we setS := [1,2d ] and define functionsf, g, h : S 7→ R as follows. The
functionsg andh are the linear functions given by

g(x) ≡ x and h(x) ≡ −x for all x ∈ S. (11)

The functionf is defined as the piecewise linear interpolant through the points
(k, k2+εk), 16 k 6 2d . Hence, on each intervalk 6 x 6 k+1, where 16 k < 2d ,
f is given by

f (x) ≡ (k2+ εk
)
(k + 1− x)+ ((k + 1)2 + εk+1

)
(x − k). (12)

Using (10), one readily verifies that the functionf is convex onS. Clearly, given
anyx ∈ S, it is possible to evaluatef (x) in O(d) arithmetic operations, and the
number of digits needed to represent the function valuesk2+εk are at most 2d plus
the number of digits needed to evaluate

∑
i∈Ik ci/c.

Finally, we show that for the setS and the functionsf , g, andh just defined,
the minimizer of(3) is the indexk of ak-th subsetIk ⊂ I that solves the knapsack
problem. Let 16 k < 2d and consider the objective function of(3) for x ∈
[k, k + 1]. By (10)–(12), the second derivative of the objective function satisfies

d2

dx2

(
h(x)+ f (x)

g(x)

)
= 2

x3
(−k(k + 1)+ εk(k + 1)− εk+1k)

6 2

x3
(−k(k + 1)+ k + 1) = 2

x3

(
1− k2

)
6 0
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for all x ∈ [k, k + 1]. This shows that the objective function of(3) is concave on
[k, k + 1], and thus its minimum over[k, k + 1] is attained atx = k or x = k + 1.
By (11)and(12), the corresponding function values are

εk

k
= ηk

2d
for x = k, and

εk+1

k + 1
= ηk+1

2d
for x = k + 1.

Therefore, problem(3) is equivalent to(9), which in turn is equivalent to solving
the knapsack problem. 2

For the special instance of problem(3) constructed in the proof of Theorem 2,
the evaluation of the associated function(5), q(r), is particularly simple. Indeed,
let x > r andx ∈ [k, k + 1] for some 16 k < 2d . Then, by(10)–(12),

d

dx

(
h(x)+ f (x)

r

)
= −1+ 2k + 1+ εk+1− εk

r

> −1+ 2k

r
> −1+ k + 1

r
> −1+ x

r
> 0.

This shows that the objective function in(4) is monotonically increasing forx =
g(x) > r andx ∈ S. Therefore, the minimum in(4) is attained forx(r) = r, and
the functionq(r) in (5) is identical to the objective function of(3). In Figure 1,
we plot the functionq for the case of the knapsack problem withd = 4, random
valueswi, ci ∈ (0,1), 16 i 6 d, and weight limitw = 0.8

∑d
i=1wi.

Figure 1 displays an example where minimizingq is identical to solving prob-
lem (3). In general, however, we may anticipate that the structure of the higher-
dimensional problem(3) is far more complicated than the scalar functionq. We
propose an approach for solving problem(3) by evaluatingq for various values of
r and exploiting Lipschitz properties ofq.

We emphasize that in the case where the functionq has very many local minim-
izers of approximately the same magnitude (as in the class of problems constructed
in the proof of Theorem 2), any approach for solving problem(1) will necessarily
be very slow (unlessP = NP).

2.3. A GLOBAL MINIMIZATION METHOD

If f, g, andh are smooth, due to the structure ofS, the functionq is generally a
piecewise smooth function. To compute a global minimizerr∗ of q, we construct a
lower-bound functionq(r) 6 q(r) and then minimizeq.

The functionq depends on a partition, 0< r(1) < r(2) < · · · < r(k), where we
assume thatr(1) 6 r∗ andr(k) > r∗. Note that

0< min
x∈S

g(x) 6 r∗ 6 max
x∈S

g(x), (13)

so that a value forr(1) can be obtained from a given lower bound ofg onS, and a
value forr(k) by solving the concave maximization problem in(13).
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Figure 1. The objective function with randomwi ’s andci ’s.

Let somei and 0< r(i) < r(i+1) be given. Define a lower-bound number

qi 6 min

{
h(x)+ f (x)

r(i+1)

∣∣∣∣ x ∈ S andg(x) > r(i)
}

(14)

so thatqi 6 q(r) for r ∈ [r(i), r(i+1)]. Note that evaluating the right-hand side of
(14)amounts to solving a convex optimization problem. Let xi be a solution of the
minimization problem in(14). It follows that

h(x(r)) + f (x(r))
r(i+1)

> h(xi)+
f (xi )

r(i+1)
> qi,

h(x(r)) + f (x(r))
r(i)

> h(x(r(i)))+ f (x(r
(i)))

r(i)
= q(r(i)).
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Using these two inequalities, for allr ∈ [r(i), r(i+1)], we get

q(r) =h(x(r))+ f (x(r))
r

= r
(i+1)

r

r − r(i)
r(i+1) − r(i)

(
h(x(r))+ f (x(r))

r(i+1)

)
+ r(i)

r

r(i+1) − r
r(i+1) − r(i)

(
h(x(r))+ f (x(r))

r(i)

)
> r

(i+1)

r

r − r(i)
r(i+1) − r(i) qi +

r(i)

r

r(i+1) − r
r(i+1) − r(i) q(r

(i))

= q(r(i))+ r
(i+1)

r(i)

r − r(i)
r(i+1) − r(i)

(
r(i)

r

(
qi − q(r(i))

))
> q(r(i))+ r

(i+1)

r(i)

r − r(i)
r(i+1) − r(i)

(
qi − q(r(i))

)
(15)

= q(r(i))+ qi ′(r − r(i)), (16)

where

qi
′ := r(i+1)

r(i)

qi − q(r(i))
r(i+1) − r(i) .

Note that the inequality(15) follows from r(i)/r 6 1 andqi − q(r(i)) 6 0.
The bound(16) proves left-sided Lipschitz continuity ofq. Indeed, nearr =

r(i), the above bound is close to the valueq(r(i)). However, forr = r(i+1), the
bound reduces toqi , which is lower than the valueq(r(i+1)).

Note that a bound of the form(15) with q(r(i+1)) in place ofq(r(i)) is not
possible. It may occur thatq(r(i+1)) � q(r(i)). Intuitively, this will happen when
S ∩ { x | g(x) > r(i+1) } no longer contains points for whichf or h are reasonably
small butS∩{ x | g(x) > r(i) } does. In this case, the Lipschitz constant forq from
the right may be much larger than the one from the left. To determine a suitable
Lipschitz property from the right, we define the function

q̃i (r) := min

{
h(x)+ f (x)

r(i+1)

∣∣∣∣ x ∈ S andg(x) > r
}
. (17)

Observe that̃qi is convex (inr). Moreover,q̃i satisfiesq̃i (r) 6 q(r) for r 6 r(i+1),
andq̃i (r(i+1)) = q(r(i+1)). We remark that when evaluatingq(r(i+1)), the problem
(17) with r = r(i+1) is solved, and the Lagrange multiplier – denoted byλg in
the sequel – corresponding to the constraintg(x) > r(i+1) can also be computed.
Indeed, interior-point methods can be implemented so that such a multiplier is
obtained at no extra cost. The Lagrange multiplier leads to the bound

q(r) > q̃i (r) > q(r(i+1))+ λg(r − r(i+1)) (18)
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Figure 2. The functionsq andq.

for r 6 r(i+1); see, e.g., Theorem VII.3.3.2 in Hiriart-Urruty and Lemarechal
(1993). The lower-bound functionq(r) is then defined forr ∈ [r(i), r(i+1)] as the
maximum of the bounds(16)and(18),

q(r) := max
{
q(r(i))+ qi ′(r − r(i)), q(r(i+1))+ λg(r − r(i+1))

}
.

A simple method for solving problem(3) then proceeds as follows. Givenk
points

0< r(1) < r(2) < · · · < r(k), with r(1) 6 r∗ 6 r(k), (19)

a new point̂r from the interval(r(i), r(i+1)) that contains a minimizer of min{ q(r) |
r ∈ [r(1), r(k)] } is chosen. Then,̂r is inserted into the list(19) (thusk is increased
by one), and the process is repeated.

Note that the update ofq(r) only involves the interval betweenr(i) andr(i+1)

neighboringr̂. This interval is split into two subintervals[r(i), r̂] and [r̂ , r(i+1)],
and the minimum ofq(r) is evaluated over both intervals. In particular, the effort
for minimizing q merely consists of bookkeeping. Figure 2 gives an example of
the bounds leading toq(r).

Note that the slopes ofq(r) andq(r) may be of opposite sign, so that in the
interior of [r(i), r(i+1)] the functionq(r)may not be a good approximation toq(r).



SOLVING THE SUM-OF-RATIOS PROBLEM 93

Hence,r̂ := arg min{ q(r) | r ∈ [r(1), r(k)] }may be a poor choice. A more reliable

choice used in our numerical examples below isr̂ := 1
2(r

(i) + r(i+1)).
To keep the evaluation ofq at moderate costs, it suffices to compute only ap-

proximations toq(r̂) and q̃ ′(r̂), along with some error estimates. Interior-point
methods are particularly suitable for computing an approximate solutionx̂(r) of
the convex problem(4), along with a certified error bound of the form|q(r) −
h(x̂(r)) − f (x̂(r))/r| 6 ε. The computation of̂x(r) takes at mostO(log(1/ε))
iterations provided that a self-concordant barrier function forS and for the level
sets of the functionsf , g, andh is known. This observation is the key point for our
proposed algorithm. Next, we present a statement of the algorithm.

ALGORITHM 4. (Conceptual overall algorithm forp = 1.)

INPUT. Functionsf , g, h and a compact convex setS defining the single-
ratio problem(3).
A stopping toleranceε > 0.

Step 0. Determiner(1) and r(2) with

0< r(1) 6 min
x∈S

g(x) and r(2) > max
x∈S

g(x).

If no such valuer(1) exists: STOP, the problem violates Assumption1.

Otherwise, computeq(r(1)), q(r(2)), and the Lagrange multipliersλ(·)g for
g.

Setk = 2 (number of ‘support points’r(·)).
Seti = 1 (interval (r(i), r(i+1)) containingarg minq(r)).

Step 1. Setr̂ = 1
2(r

(i) + r(i+1)).

Step 2. Computeq(r̂) along with the Lagrange multiplier̂λg for g.
Step 3. Based on(18), evaluate

arg min
r∈[r(i),r̂]

q(r) and arg min
r∈[r̂,r(i+1)]

q(r).

Step 4. Increasek by one, and insert̂r into the list of r(·)’s.
Step 5. Find i 6 k − 1 such thatr̃ := arg minr q(r) ∈ (r(i), r(i+1)).

Step 6. If q(r̃) > min16ι6k q(r(ι))− ε, then STOP:
r̃ is an approximate minimizer.

Otherwise, return toStep 1.

We remark that, in Step 3 of Algorithm 4, the boundq(r)may either be obtained
by settingq

i
= −∞, or by solving an additional problem of the form(14). The

latter case is more expensive and results in a better bound forq(r) since both(16)
and (18) are used. In most cases (unlessλg in (18) is ‘overly large’), it is more
efficient to rely on(18)only, and not to solve(14).
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Note that the minimizers of the lower-bound functionq(r) computed in Step 3
of Algorithm 4 can be stored in a heap, so that Step 5 merely consists of selecting
the first element from this heap.

Finally, we remark that, in practice, the feasible setS will usually be of the form

S =
{
x ∈ Rn

∣∣∣∣ bi(x) 6 0 for all i = 1,2, . . . , m

}
,

whereb1, b2, . . . , bm are given convex functions.

3. Minimizing the sum of several fractions

In this section, we return to the general problem(1) of minimizing the sum of a
convex function andp ratios. The basic idea for solving problem(1) is similar to
the special casep = 1 treated in Section 2.

Let p > 2, and again let Assumption 1 be satisfied. In this case,r =
[r1 r2 · · · rp]T ∈ Rp is a vector ofp parameters. In analogy to the defini-
tions(4) and(5) of x(r) andq(r) in the casep = 1, we set

x(r) := arg min

 h(x)+
p∑
j=1

fj (x)

rj

∣∣∣∣ x ∈ S(r)
 ,

(20)

whereS(r) :=
{
x ∈ S

∣∣∣∣ gj (x) > rj for all j = 1,2, . . . , p

}
,

and

q(r) := h(x(r)) +
p∑
j=1

fj (x(r))

rj
.

Initially, we assume that vectorsr(1) and r(2) are computed such that there is a
minimizerr∗ of q satisfyingr(1) 6 r∗ 6 r(2). (As usual, the6-sign is understood
component wise.) Each component ofr(1) andr(2) can be computed separately as
in the casep = 1.

Now let r, r(i), r(i+1), and some direction1r ∈ Rp be given such that the
relations

r(i) 6 r 6 r(i+1) and r(i) 6 r +1r 6 r(i+1)

are satisfied. The bounds(16) and(18) can be generalized to provide bounds for
q(r+1r). We split1r = 1r+−1r− with1r+, 1r− > 0 and(1r+)T1r− = 0.
Let λj > 0 be the Lagrange multipliers for the constraintsgj (x) > rj in (20). By
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Theorem VII.3.3.2 in Hiriart-Urruty and Lemarechal (1993), a lower bound forq

is given by

q(r −1r−) > q(r) − λT1r−. (21)

To obtain a lower bound forq in direction1r+, we define the value

qi,i+1 6 min

h(x)+
p∑
j=1

fj (x)

r
(i+1)
j

∣∣∣∣ x ∈ S (r(i))
 .

It then follows that

q(r) =h(x(r))+
p∑
j=1

fj (x(r))

rj

=h(x(r))+
p∑
j=1

r
(i)
j

rj

r
(i+1)
j − rj
r
(i+1)
j − r(i)j︸ ︷︷ ︸
=1−νj

fj (x(r))

r
(i)
j

+
p∑
j=1

r
(i+1)
j

rj

rj − r(i)j
r
(i+1)
j − r(i)j︸ ︷︷ ︸
=:νj

fj (x(r))

r
(i+1)
j

= (1− ν)
h(x(r))+ p∑

j=1

fj(x(r))

r
(i)
j


︸ ︷︷ ︸

>q(r(i))

+ ν h(x(r))+
p∑
j=1

(ν − νj )︸ ︷︷ ︸
>0

fj (x(r))

r
(i)
j︸ ︷︷ ︸

>fj (x(r)) / r(i+1)
j

+νj fj (x(r))
r
(i+1)
j

 ,

where

ν := max
16j6p

νj = max
16j6p

r
(i+1)
j

rj

rj − r(i)j
r
(i+1)
j − r(i)j

6 max
16j6p

r
(i+1)
j

r
(i)
j

rj − r(i)j
r
(i+1)
j − r(i)j

.

Combining the above relations, we get

q(r) > (1− ν) q(r(i))+ ν
h(x(r))+ p∑

j=1

fj (x(r))

r
(i+1)
j


> (1− ν) q(r(i))+ ν qi,i+1. (22)
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This bound is analogous to the one forp = 1 given in(16).
In (22), we may replacer(i) by r − 1r−, q(r(i)) by q(r) − λT1r−, andr by

(r −1r−)+1r+ to obtain the new bound

q(r +1r) > (1− ν)(q(r)− λT1r−)+ νqi,i+1

with

ν := max
16j6p

r
(i+1)
j

rj +1r+j
1r+j

r
(i+1)
j − rj

6 max
16j6p

r
(i+1)
j

rj

1r+j
r
(i+1)
j − rj

.

Based on this bound, we can define an anisotropic trust region about each point
r, as long as some lower and some upper limits (liker(i) andr(i+1) in the previ-
ous derivation) are given. The union of the trust regions about all support points
r(i) forms a Voronoi diagram inRp, the vertices of which contain the candidates
for the minimizer of the lower-bound functionq(r). For a definition of Voronoi
diagrams, their properties, and algorithms for their numerical computation, we
refer the reader to Aurenhammer (1991); Fortune (1997). As in the casep = 1,
these candidates for the minimizer ofq(r) may not result in the best choice for
inserting a new valuêr somewhere between the known pointsr(i). In addition, the
computation of the vertices of the Voronoi diagram is complicated and expens-
ive. We propose a simpler scheme based on bounds analogous to(18)where the
lower-bound functionq(r) is defined in the box

B(i) :=
{
r ∈ Rp

∣∣∣∣ rj ∈ [r(i)j −, r(i)j ] for 16 j 6 p
}

with given vectorsr(i)j
−
< r

(i)
j . For r ∈ B(i), we obtain from(21) that q(r) :=

q(r(i))+ λT (r − r(i)) 6 q(r).
Next, we summarize the resulting overall algorithm.

ALGORITHM 5. (Conceptual overall algorithm forp > 2.)

INPUT. Functionsf1, f2, . . . , fp, g1, g2, . . . , gp, h, and a compact con-
vex setS defining the multi-ratio problem(1).
A stopping toleranceε > 0.

Step 0. For all 16 j 6 p, determine

0< r(1)j 6 min
x∈S

gj (x) and r
(2)
j > max

x∈S
gj (x).

If r(1)j does not exist for some1 6 j 6 p: STOP, the problem violates
Assumption1.

Otherwise, computeq(r(1)), q(r(2)), and the Lagrange multipliersλ(·)j for
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thegj ’s.

Setk = 2 (number of ‘support points’r(·)).
Seti = 2andr(2)

− := r(1) (the boxr(i)
−6r6r(i) containingarg minq(r)).

Step 1. Setl = arg max
16j6p

λ
(i)
j (r

(i)
j −r(i)j

−
) (the index where a split pays most) and

definer̂ by

r̂j =
{
r
(i)
j for j 6= l,

1
2(r

(i)
j + r(i)−j ) for j = l.

Step 2. Computeq(r̂) along with the Lagrange multiplier̂λj for each functiongj .
Step 3. Based on(21), evaluate

arg min
r∈B(i): rl∈[r(i)l

−
,r̂l]
q(r) and arg min

r∈B(i): rl∈[r̂l ,r(i)l ]
q(r).

Step 4. Increasek by one, insert̂r into the list of r(·)’s splitting B(i) along the
hyperplanerl = r̂l into two boxes(one forr̂ and one forr(i)).

Step 5. Find i 6 k such thatr̃ := arg minr q(r) ∈ B(i).
Step 6. If q(r̃) > min16ι6k q(r(ι))− ε, then STOP:

r̃ is an approximate minimizer.

Otherwise, return toStep 1.

4. Numerical experiments

Algorithm 4 for minimizing the sum of a convex function and ofp = 1 convex-
concave fraction has been implemented in Matlab. For the solution of the convex
subproblems, we use the interior-point method described in (Jarre and Saunders,
1995). As we have seen in Figure 1, the resulting problem(3)may be very complic-
ated, and may have very many local minimizers. Nevertheless, we anticipate that
the parameterization with respect tor will smooth out many of the local minimizers
of (3) and thus result in a functionq that is easier to minimize than the objective
function of the original problem(3).

In this section, we report numerical results of Algorithm 4 applied to certain
examples with random data. In this case, the expectation that the functionq is
easier to minimize than the original problem(3) was fully met. In fact, the function
q appeared to be unimodal with respect tor for these examples.

Our test examples are minimization problems of the form(3), where

h(x) = 1
2x

T Hx + hT x + κ, f (x) = 1
2x

T Fx + f T x + ϕ,
g(x) = −1

2x
T Gx − gT x − γ,

S =
{
x ∈ Rn

∣∣∣∣ xT Dix + dTi x + δi 6 0, i = 1,2, . . . , m

}
.

(23)
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Here, the matricesH,F,G andD1,D2, . . . ,Dm are constructed to be positive
semidefinite. Therefore, in(23), the functionsh andf are convex, the functiong
is concave, and the feasible setS is convex. The data for(23) is chosen randomly
as follows. For each matrixDi, we first generated a random lower bidiagonal
matrix Li the nonzero entries of which are uniformly distributed in[−1,1], and
then we computedDi := LiL

T
i . This guarantees that eachDi is a positive semi-

definite tridiagonal matrix. Similarly,H , F , andG are constructed as random
positive semidefinite tridiagonal matrices. In(23), h, f , g, and d1, d2, . . . , dm
are vectors that were also generated randomly. Furthermore, the scalarsκ, ϕ, γ ,
andδ1, δ2, . . . , δm were chosen such that the interior of the feasible domainS is
guaranteed to be nonempty, and such that the functionsf andg are guaranteed not
to have a zero inS. Finally, we have run experiments for problems(23)with values
of n ranging fromn = 50 ton = 500 and values ofm ranging fromm = 10 to
m = 100. Note that the constraints in(23)are nonlinear, and therefore, adaptations
of the simplex method for solving problem(3) with data(23) would be rather
complicated.

In Figure 3, we plot the functionq for a typical example(23)with n = 200 and
m = 20. Each ‘∗’ marks a pointr at which the method has evaluated the functionq

in order to be able to guarantee that the final iterate is indeed an approximate global
minimizer. Thus, each ‘∗’ stands for the application of an interior-point method
to solve a convex problem of the form(4). Since for each ‘∗’ the interior-point
method can be ‘warm-started’ using as starting points some convex combination
of almost final iterates of two neighboring problems, the overall number of interior-
point iterations for each ‘∗’ was less than eight in the average. The curveq(r) is of
course not known, in general. (Here, it is plotted merely for illustration; its values
were determined by solving a convex problem of the form(4) for some 200 evenly
spaced values ofr.)

In Figure 4, we show a detailed enlargement of the points generated by Al-
gorithm 4 near the global minimizer of a problem withn = 100 andm = 20. The
plot shows that the distance between support pointsr on the right of the minimizer
is much smaller than to the left, indicating that in this particular case, the Lipschitz
bound(16)provides a much more accurate approximation toq(r) than(18). Thus,
the algorithm did not evaluate a further refinement for the points on the left of the
minimizer.

In Table 1, we report the number of iterations taken by our Matlab implementa-
tion to solve problem(23)with m = 20 convex quadratic constraints and different
dimensionsn. The stopping criterion for these examples was chosen such that

q(rfinal)− q(ropt) 6 10−4 (q(r1)− q(ropt)
)

is guaranteed. Here,q(ropt) is the unknown global optimum of(23). The numerical
results are intended to provide a first rough estimate on the dependence of our
algorithm on the dimensionn of the space. We stress that the numbers of Newton
steps and Hessian evaluations in Table 1 could be further reduced by a more soph-
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Figure 3. The functionq(r) for a random example,n = 200,m = 20.

Figure 4. The functionq(r) near the global minimum for a random example,n = 100,
m = 20.
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Table 1. Iteration numbers.

Dimension n = 50 n = 100 n = 200 n = 500

# of r’s 20 17 14 14

# of IP iterations 407 384 299 326

# of Hessians 644 584 478 548

# of Newton steps 1277 1134 980 1135

Figure 5. The functionq(r) for a case with several local minima.

isticated implementation. The number of Newton steps given in Table 1 refers to
the sum of exact and inexact Newton steps. For inexact Newton steps, the Hessian
matrix of a previous Newton step has been used in place of the current Hessian
matrix. The overall computational effort is dominated by the number of Hessian
evaluations. The number ofr ’s refers to the number of support pointsr at which
q(r) was evaluated.

The random examples presented above exhibited only one local minimizer of
the functionq, as in Figure 3. We therefore constructed some small problems in
three dimensions in such a way that there were several local minimizers at integer
values ofr. If two or more of the local minimizers have nearly the same value
q(r), the method refines about both minimizers until the global minimizer has
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been identified. The plot in Figure 5 shows such a ‘worst-case’ behavior where
the method takes a large number of steps before identifying a point nearr = 2 as
an ε-global minimizer. If the stopping toleranceε is decreased further, then only
the bounds nearr = 2 are refined to increase the accuracy of the global minimizer.

It is needless to say that Algorithm 4 does not lend itself to solving the knapsack
problem of Section 2.2. The structure of the knapsack problem is not exploited by
Algorithm 4, and the Lipschitz bounds(16) and (18) are too weak to provide a
sufficiently sharp lower estimate for the functionq for an interval of length more
than one. Hence Algorithm 4 is at least as expensive as enumerating all possible
integer solutions. While the knapsack problem represents an example for which
Algorithm 4 is not suitable, we believe that most applications have a structure more
similar to the random problems above for which Algorithm 4 provides a reliable
and reasonably fast method for identifying the global minimum.

5. Conclusions

We considered the sum-of-ratios problem inRn where the sum of a convex function
andp convex-concave fractions is minimized subject to convex constraints. We
proposed an approach to transform this problem to the problem of minimizing a
suitably defined functionq of p variables. The functionq can be evaluated by
using an interior-point method for convex minimization. We established Lipschitz
bounds forq that can also be evaluated numerically by using an interior-point
method. Based on these bounds, a method was derived to find anε-approximation
to the global minimizer of the sum-of-ratios problem.

We presented numerical experiments with the proposed algorithm for the case
of minimizing the sum of a convex function and ofp = 1 convex-concave fraction.
An implementation of the algorithm for the casep > 2 will be described elsewhere.
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